
Bridging the Gap between Serving and Analytics

in Scalable Web Applications

Panagiotis Garefalakis
Imperial College London
pg1712@imperial.ac.uk

Raul Castro Fernandez
Imperial College London
rc3011@doc.ic.ac.uk

Peter Pietzuch
Imperial College London

prp@doc.ic.ac.uk

Abstract. Web applications that include personalised rec-
ommendations, targeted advertising, and other analytics
functions must maintain complex prediction models, which
are trained over large datasets. Such applications typically
separate stored data into offline and online data based on
its time to compute and freshness requirements. To serve re-
quests robustly and with low latency, applications then cache
data from the analytics layer, constructing responses from
this data; to train models and offer analytics, they use asyn-
chronous offline computation in the analytics layer, which
leads to stale data being served to clients.

Instead, our goal is to offer a unified model to developers
when writing web applications that serve data while using
big data analytics. Our idea is to express the online and of-
fline logic of a web application as a single stateful distributed
dataflow graph. The state of the dataflow computation is
then expressed as In-memory Web Objects (IWOs), which
are directly accessible as persistent objects by the applica-
tion. This means that the application can exploit data-parallel
processing for compute-intensive requests, e.g. when train-
ing complex models, while serving results with low latency
from IWOs.
Motivation. Modern web applications must offer low-
latency responses, which typically means that they pre-
compute computationally-expensive analytics tasks such as
personalised recommendations using asynchronous back-
end systems. These tasks are decoupled from the critical path
of serving web requests, and, for serving, developers must
load pre-computed results into scalable stores such as dis-
tributed key/value stores. The pre-computation is performed
by data-parallel frameworks such as Hadoop or Spark.

[Copyright notice will appear here once ’preprint’ option is removed.]

Challenges. Despite achieving low latency, the above ap-
proach has a number of limitations: (i) decoupling data an-
alytics from serving means that results can be stale, which
has a negative impact on time-critical data such as adver-
tisements. More than 70% of all Hadoop jobs running at
LinkedIn [3] use key-value stores as egress mechanism;
(ii) caching data, while reducing the read load, requires the
construction of complex queries, involving multiple back-
end stores; and (iii) a variety of stores and back-end systems
must be managed and scaled out independently, which has
proven to be hard, error-prone and inefficient.
Approach. Our goal is to provide a unified model for web
applications by exposing a common object-based interface
to the developers for handling offline and online data. A web
application framework, such as Play for Java, can directly
manipulate persistent objects, which we extend to become
In-memory Web Objects (IWOs). IWOs are computed in
data-parallel fashion, either on-demand when a web request
is handled, or asynchronously when representing previously
computed, cached data. They are implemented as in-memory
state in a stateful distributed dataflow model [1]. Since IWOs
are maintained in-memory but manipulated in a data-parallel
fashion, they can satisfy the requirements of offline and
online data processing in web applications.

We describe an initial design of a framework that supports
stateful dataflow graphs with IWOs based on SEEP, an open-
source, data-parallel processing platform. We show that, us-
ing a source-to-source compiler [2], it is possible to automat-
ically synthesise the dataflow graphs for existing Java-based
web applications, thus benefiting from data-parallelism for
serving computationally-expensive requests while maintain-
ing analytics over large amounts of data.

References

[1] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.
Integrating Scale Out and Fault Tolerance in Stream Processing using
Operator State Management. In ACM SIGMOD, 2013.

[2] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.
Making State Explicit for Imperative Big Data Processing. In USENIX
ATC, 2014.

[3] R. Sumbaly, J. Kreps, and S. Shah. The ”Big Data” Ecosystem at
LinkedIn. In ACM SIGMOD, 2013.

1 2015/4/10

Front-End (Web)

view(user){
 //Access Dataflow live state
 DataSource ds = DB.getDatasource()
 userRow = db.get(userItem).getRow(user)
 coOcc.multiply(userRow)
}
rateItem(user, item, rating){
 //Write directly to dataflow state
 DataSource ds = DB.getDatasource()
 ds.updateUserItem(user, item, rating)
 ds.updateCoOc(UserItem)
 return OK;
}

login(user, password){
 if(! User.authenticate(user, pass))
 return "Invalid credentials”
}

Back-End

Play Framework

SDG Distributed Processing System

write datasource

read datasource

Relational Store

MySQL

userItem
Cooccurrence

Transparent State

low latency interface

In-Memory
Web Object

(IWO)

batch processesing

direct access

authenticate user through SQL api

ORM interface

IWO interface

Recommendation algorithm synchronously
reads and updates IWOs from the distributed
SDG system through a low latency interface

Java2SDG

Dataflow Compiler

Stateful Dataflow Graph

Controller Code

Front-End (Web)

4.

5.

7.

8.

Data Transport Layer Back-End

Relational Store

MySQL

Non Relational Store

userItem

Cooccurrence

Casssandra

Queueing System

rat
ing

rat
ing

rat
ing

Kafka

Scheduler

Java App

Batch Proccesing
High-Latency
High-Throughput

6.

Hadoop Cluster

login(user, password){
 if(! User.authenticate(user, pass))
 return "Invalid credentials”
}

view(user){
 //Constructing Recommendation
 userRow = userItem.getRow(user)
 coOcc.multiply(userRow)
}

rateItem(user, item, rating){
 //Pushing new rating in the queue
 Queue.publish(user, item, rating)
}

Play Framework

reduce(key, Iterator userRows){
 for each row in userRows:
 //Generate user recommendations
 UserRec.add(Cooccurrence.multiply(row))
 Emit(merge(userRec))
}

map(key, Matrix ratings){
 for each rating in ratings:
 //update user ratings
 userItem.setElement(user,item,rating)
 userRow = userItem.getRow(user)
 //emit the update user rating row
 EmitIntermediate(rating, userRow)
}

Map Reduce Job

6.

async fetch ratings

synch authenticate

1.

get recommendations

2.

3.

sync add new rating

read userItem data

batch process for recommendation data

write CoOccurence data

update data

4.
async fetch data

sync

ORM interface

Queue interface

Key-value interface

#

#

Synchronous Task

Asynchronous Task

 Bridging the Gap between Serving and Analytics
in Scalable Web Applications

Panagiotis Garefalakis, Raul Castro Fernandez, Peter Pietzuch
Large-Scale Distributed Systems (LSDS) Group, Department of Computing

 Imperial College London

pg1712@imperial.ac.uk, rc3011@doc.ic.ac.uk, prp@doc.ic.ac.uk

Motivation
•  Most modern web and mobile applications today offer highly personalised services generating large amounts of data
•  Stored data is separated into offline and online data, based on its generation cost and freshness requirements
•  Data resides on different storage layers and is processed by different systems to hide the underlying complexity
•  Serving and Analytics layers are decoupled in order to serve requests with the minimum processing overhead

Challenges
1.  Serving stale data can have negative impact on time critical tasks

2.  Building web responses using multiple systems involves joining
information from complex back-end systems

Typical Web Application Today

Dataflow-Based Web Application using In-memory Web Objects (IWOs)

Acknowledgments
This work was partially supported by a PhD CASE Award funded by EPSRC/BAE Systems
and by the High-Performance and Embedded Distributed Systems Centre for Doctoral
Training (CDT) HiPEDS programme.

References
R. Sumbaly, J. Kreps, and S. Shah. The ”Big Data” Ecosystem at LinkedIn.
In SIGMOD, 2013.

R. C. Fernandez, M. Migliavacca, et al. Integrating Scale Out and Fault Tolerance in Stream
Processing using Operator State Management. In SIGMOD, 2013.

R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Making state explicit for
imperative big data processing. In USENIX ATC, 2014.

Summary
•  Need for web frameworks to handle entire lifecycle of web requests,

including data serving and analytics

•  Unified model for web applications by exposing common object-based
interface for handling offline and online data

•  Extends popular web application frameworks such as Play for Java to
directly manipulate In-Memory Web Objects (IWOs) instead of plain
persistent objects

Challenges
3.  Increased developers’ effort to learn and program these systems

4.  High complexity to maintain, monitor and scale a variety of systems
independently

