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Abstract. Web applications that include personalised rec-
ommendations, targeted advertising, and other analytics
functions must maintain complex prediction models, which
are trained over large datasets. Such applications typically
separate stored data into offline and online data based on
its time to compute and freshness requirements. To serve re-
quests robustly and with low latency, applications then cache
data from the analytics layer, constructing responses from
this data; to train models and offer analytics, they use asyn-
chronous offline computation in the analytics layer, which
leads to stale data being served to clients.

Instead, our goal is to offer a unified model to developers
when writing web applications that serve data while using
big data analytics. Our idea is to express the online and of-
fline logic of a web application as a single stateful distributed
dataflow graph. The state of the dataflow computation is
then expressed as In-memory Web Objects (IWOs), which
are directly accessible as persistent objects by the applica-
tion. This means that the application can exploit data-parallel
processing for compute-intensive requests, e.g. when train-
ing complex models, while serving results with low latency
from IWOs.
Motivation. Modern web applications must offer low-
latency responses, which typically means that they pre-
compute computationally-expensive analytics tasks such as
personalised recommendations using asynchronous back-
end systems. These tasks are decoupled from the critical path
of serving web requests, and, for serving, developers must
load pre-computed results into scalable stores such as dis-
tributed key/value stores. The pre-computation is performed
by data-parallel frameworks such as Hadoop or Spark.
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Challenges. Despite achieving low latency, the above ap-
proach has a number of limitations: (i) decoupling data an-
alytics from serving means that results can be stale, which
has a negative impact on time-critical data such as adver-
tisements. More than 70% of all Hadoop jobs running at
LinkedIn [3] use key-value stores as egress mechanism;
(ii) caching data, while reducing the read load, requires the
construction of complex queries, involving multiple back-
end stores; and (iii) a variety of stores and back-end systems
must be managed and scaled out independently, which has
proven to be hard, error-prone and inefficient.
Approach. Our goal is to provide a unified model for web
applications by exposing a common object-based interface
to the developers for handling offline and online data. A web
application framework, such as Play for Java, can directly
manipulate persistent objects, which we extend to become
In-memory Web Objects (IWOs). IWOs are computed in
data-parallel fashion, either on-demand when a web request
is handled, or asynchronously when representing previously
computed, cached data. They are implemented as in-memory
state in a stateful distributed dataflow model [1]. Since IWOs
are maintained in-memory but manipulated in a data-parallel
fashion, they can satisfy the requirements of offline and
online data processing in web applications.

We describe an initial design of a framework that supports
stateful dataflow graphs with IWOs based on SEEP, an open-
source, data-parallel processing platform. We show that, us-
ing a source-to-source compiler [2], it is possible to automat-
ically synthesise the dataflow graphs for existing Java-based
web applications, thus benefiting from data-parallelism for
serving computationally-expensive requests while maintain-
ing analytics over large amounts of data.
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Front-End (Web)

view(user){
   //Access Dataflow live state 
   DataSource ds = DB.getDatasource()
   userRow = db.get(userItem).getRow(user)
   coOcc.multiply(userRow)
}
rateItem(user, item, rating){
   //Write directly to dataflow state
   DataSource ds = DB.getDatasource()
   ds.updateUserItem(user, item, rating)
   ds.updateCoOc(UserItem)
   return OK;
}

login(user, password){
  if(! User.authenticate(user, pass))
    return "Invalid credentials” 
}
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Hadoop Cluster

login(user, password){
 if(! User.authenticate(user, pass))
    return "Invalid credentials” 
}

view(user){
   //Constructing Recommendation
   userRow = userItem.getRow(user)
   coOcc.multiply(userRow)
}

rateItem(user, item, rating){
   //Pushing new rating in the queue
   Queue.publish(user, item, rating)
}

Play Framework

reduce(key, Iterator userRows){
   for each row in userRows:
     //Generate user recommendations
     UserRec.add(Cooccurrence.multiply(row))
     Emit(merge(userRec))
}

map(key, Matrix ratings){
  for each rating in ratings:
    //update user ratings
    userItem.setElement(user,item,rating)
    userRow = userItem.getRow(user)
    //emit the update user rating row
    EmitIntermediate(rating, userRow)
}
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Motivation 
•  Most modern web and mobile applications today offer highly personalised services generating large amounts of data 
•  Stored data is separated into offline and online data, based on its generation cost and freshness requirements 
•  Data resides on different storage layers and is processed by different systems to hide the underlying complexity 
•  Serving and Analytics layers are decoupled in order to serve requests with the minimum processing overhead 

Challenges 
1.  Serving stale data can have negative impact on time critical tasks 

2.  Building web responses using multiple systems involves joining 
information from complex back-end systems 

Typical Web Application Today 

Dataflow-Based Web Application  using In-memory Web Objects (IWOs) 
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Summary 
•  Need for web frameworks to handle entire lifecycle of web requests, 

including data serving and analytics 

•  Unified model for web applications by exposing common object-based 
interface for handling offline and online data 

•  Extends popular web application frameworks such as Play for Java to 
directly manipulate In-Memory Web Objects (IWOs) instead of plain 
persistent objects 

Challenges 
3.  Increased developers’ effort to learn and program these systems 

4.  High complexity to maintain, monitor and scale a variety of systems 
independently 


